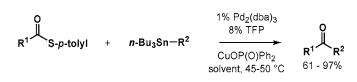
Ketone Synthesis under Neutral Conditions. Cu(I) Diphenylphosphinate-Mediated, Palladium-Catalyzed Coupling of Thiol Esters and Organostannanes

RUdiger Wittenberg, Jiri Srogl, Masahiro Egi, and Lanny S. Liebeskind*

Emory University, Department of Chemistry, 1515 Pierce Drive, Atlanta, Georgia 30322


chemLL1@emory.edu

Received May 30, 2003

ORGANIC LETTERS 2003

2003 Vol. 5, No. 17 3033–3035

ABSTRACT

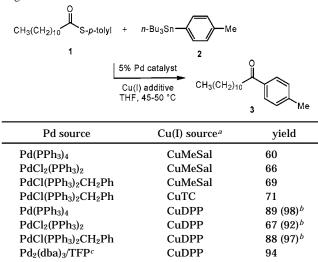
A versatile approach to ketone synthesis is described. The reaction relies on the palladium-catalyzed, copper diphenylphosphinate-mediated coupling of thiol esters with organostannanes under neutral reaction conditions. This reaction complements the previously described coupling of thiol esters with boronic acids that used dual thiophilic-borophilic activation methodology.

Transition-metal-catalyzed cross-coupling reactions represent extremely powerful tools in organic synthesis.¹ As one recent example, thiol esters and boronic acids participate in a palladium-catalyzed, copper-mediated cross-coupling reaction to give ketones under neutral reaction conditions.² This new reaction relies upon the unique ability of a Cu(I) carboxylate to effect transmetalation of the intermediate acylpalladium thiolate (RCOPdL₂SR') and a boronic acid through simultaneous thiophilic activation of the palladium thiolate bond and borophilic activation of the boronic acid.³ To present the synthetic community with additional options for carbon carbon bond formation through cross-coupling protocols, we now describe an extension of the thiophilic activation methodology to the coupling of thiol esters with organostannanes.⁴ This system represents a useful approach to ketone synthesis under neutral reaction conditions from synthetically versatile thiol esters and complements the previously described coupling of thiol esters with boronic acids.² Some transformations of thiol esters to ketones are known, but they proceed under basic reaction conditions and are not general.⁵ Other acylpalladium-based ketone syntheses are also known.⁶

The coupling reaction of thiol ester 1 with organostannane 2 was examined as a model system (Table 1). No observable reaction occurred between the reaction partners in the presence of various palladium catalysts alone. However, upon addition of Cu(I) 3-methylsalicylate (CuMeSal) or Cu(I)

⁽¹⁾ Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.

⁽²⁾ Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260-11261.


⁽³⁾ See also: Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. **2001**, *3* (1), 91–93. Savarin, C.; Liebeskind, L. S. Org. Lett. **2001**, *3* (14), 2149–2152. Srogl, J.; Liebeskind, L. S. Org. Lett. **2002**, *4* (6), 979–981. Kusturin, C. L.; Liebeskind, L. S.; Neumann, W. L. Org. Lett. **2002**, *4* (6), 983–985. Liebeskind, L. S.; Srogl, J.; Savarin, C.; Polanco, C. Pure Appl. Chem. **2002**, *74* (1), 115–122.

⁽⁴⁾ See also: Egi, M.; Liebeskind, L. S. Org. Lett. **2003**, *5*, 801–802. Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet, G. Org. Lett. **2003**, *5*, 803–805.

⁽⁵⁾ Anderson, R. J.; Henrick, C. A.; Rosenblum, L. D. J. Am. Chem. Soc. **1974**, 96, 3654–3655. Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. Tetrahedron Lett. **1987**, 28, 2053–2056. Kawanami, Y.; Katsuki, I.; Yamaguchi, M. Tetrahedron Lett. **1983**, 24, 5131–5132. Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. **1998**, 39, 3189–3192. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. **1974**, 47, 1777–1780. Kim, S.; Lee, J. I. J. Chem. Soc., Chem. Commun. **1981**, 1231–1232.

 Table 1. Model System for the Coupling of Thiol Esters with

 Organostannanes

^{*a*} CuTC = Cu(I) thiophene-2-carboxylate; CuMeSal = Cu(I) 3-methylsalicylate; CuDPP = Cu(I) diphenylphosphinate. ^{*b*} Yield based on recovered thiol ester. ^{*c*} TFP = tri-2-furylphosphine.

thiophene-2-carboxylate (CuTC), copper sources that had earlier proven to be effective for the palladium-catalyzed coupling of boronic acids with thiol esters,² heteroaromatic thioethers,⁷ or thioalkynes,⁸ ketone **3** was generated in moderate to good yields after 24 h in THF at 45-50 °C. Cu(I)Cl was ineffective as an additive, promoting only low conversion to product with various side reactions. No significant difference in efficiency was noted among the palladium catalysts Pd(PPh₃)₄, PdCl₂(PPh₃)₂, and PdCl-(PPh₃)₂(CH₂Ph), all of which produced ketone **3** in isolated yields between 60 and 71%.

The reaction workup was tedious, and removal of the tin residues was not efficient under the conditions mentioned above.⁹ In earlier work on Stille cross-coupling reactions mediated only by copper(I) carboxylates,¹⁰ we had noted the effectiveness of the Ph₂P(O)O⁻ counterion in facilitating the separation of tin residues (as *n*-Bu₃SnOP(O)Ph₂) from the reaction mixture. This led in the current study to the consideration of Cu(I) diphenylphosphinate (CuDPP) as a unique mediator for the palladium-catalyzed coupling of thiol esters with organostannanes. In fact, CuOP(O)Ph₂ mediated the palladium-catalyzed coupling reaction of **1** with **2** in the presence of 5% Pd(PPh₃)₄, PdCl₂(PPh₃)₂, or PdCl(PPh₃)₂(CH₂-Ph) as catalysts to give ketone **3** in good to excellent isolated

yields (Table 1). Notably, after a simple workup and chromatography, the desired product **3** was easily separated from *n*-Bu₃SnOP(O)Ph₂ and the copper residues. Additional improvements in yield were obtained using tri-2-furylphosphine (TFP) as a supporting ligand in combination with Pd₂-dba₃, a catalyst system for which Farina had noted large rate accelerations in Stille cross-coupling reactions.^{11,12}

To judge the generality of this new reaction, the crosscoupling of *S*-*p*-tolyl thiol esters with various tri-*n*-butylorganostannanes was investigated using between 0.65 and 2.5% of a 1:8 Pd₂dba₃/TFP catalyst system and 1.2–2.2 equiv of CuOP(O)Ph₂. The results are depicted in Table 2; THF was

Table 2. Cross-Coupling of Thiol Esters and Organostannanes 0 II			
	R ¹ S- <i>p</i> -tolyl	+ <i>n</i> -Bu ₃ Sn—R ²	
		0.65 - 2.5% (1:8 Pd ₂ (dba) ₃ :TFP)	► I
		1.2-2.2 equiv CuOP(O)Ph solvent, 40-50 °C	$_2 R^1 R^2$
entry	thiol ester, R ¹	stannane, R ²	R ¹ COR ² yield (%) ^a
1 <i>^b</i>	CH ₃ (CH ₂) ₁₀	<i>p</i> -tolyl	91
2^{b}	CH ₃ (CH ₂) ₁₀	2-furyl	78
3^{b}	CH ₃ (CH ₂) ₁₀	2-thienyl	73
4^{b}	(E)-β-styryl	3-pyridyl	76
5^b	(E)-β-styryl	4-pyridyl	67
6 ^b	$p-NO_2C_6H_5$	2-pyridyl	70
7^b	p-NO ₂ C ₆ H ₅	1-methyl-2-pyrrolyl	91
8 ^c	p-NO ₂ C ₆ H ₅	2-pyrimidinyl	61
9^d	$p-NO_2C_6H_5$	2-thiazolyl	69
10^d	2-benzofuranyl	2-pyrazyl	96
11^d	1-adamantyl	3-formyl-4-pyridyl	68
12^d	2-aminophenyl	2-benzofuranyl	93
13^d	2-acetoxyacetyl	2-benzofuranyl	96
14^{e}	CH ₃ (CH ₂) ₁₀	2-methyl-1-propenyl	92
15^{e}	<i>o</i> -tolyl	2-methyl-1-propenyl	81
16 ^e	o-tolyl	2-thienyl	97
17 ^e	CH ₃ (CH ₂) ₁₀	3-propenyl	81

^{*a*} Isolated yields of purified products. ^{*b*} Conditions: 1% Pd₂(dba)₃, 8% TFP, 1.2 equiv of CuDPP, THF, 50 °C, 7 h. ^{*c*} Conditions: 2.5% of Pd₂(dba)₃, 20% TFP, 1.2 equiv of CuDPP, THF, 50 °C, 7 h. ^{*d*} Conditions: 0.65% Pd₂(dba)₃, 5.2% TFP, 1.3 equiv of CuDPP, 1:1 THF/hexanes, 40 °C, 18 h. ^{*e*} Conditions: 2.5% of Pd₂(dba)₃, 20% TFP, 2.2 equiv of CuDPP, THF, 50 °C, 1–25 h.

used as the solvent. The reaction system shows excellent generality and delivers good to excellent isolated yields of ketones from alkyl, aryl, heteroaryl, and functionalized *S*-*p*-tolyl thiol esters and from aryl, heteroaryl, and alkenylstannanes. In general, very good yields are obtained even using 1.2-1.3 equiv of the Cu(I) mediator, although in a few cases higher loadings were used. Some organotin compounds are noticeably sensitive to copper-mediated side reactions such as oxidative homocoupling and protodestannylation, probably

⁽⁶⁾ Farina, V.; Krishnamurthy, V.; Scott, W. J. In Organic Reactions; Paquette, L., Ed.; John Wiley & Sons: New York, 1997; Vol. 50, pp 1–652. Mitchell, T. N. Synthesis **1992**, 803–815. Haddach, M.; McCarthy, J. R. Tetrahedron Lett. **1999**, 40, 3109–3112. Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett. **1999**, 40, 3057–3060. Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457–2483. Goossen, L. J.; Ghosh, K. Angew. Chem., Int. Ed. **2001**, 40, 3458–3460. Yamamoto, A. Pure Appl. Chem. **2002**, 74, 1–5. (7) Liebeskind, L. S.; Srogl, J. Org. Lett. **2002**, 4, 979–981.

⁽⁷⁾ Liebeskind, L. S., Stogi, J. Org. Lett. 2002, 4, 979–961.
(8) See Supporting Information for: Savarin, C.; Srogl, J.; Liebeskind,

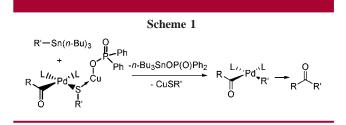
L. S. *Org. Lett.* **2001**, *3* (1), 91–93. (9) Neither the standard treatment with KF nor washing with an aqueous

⁽⁹⁾ Neither the standard treatment with KF nor washing with an aqueous NaOH solution was effective.

⁽¹⁰⁾ Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748-2749.

⁽¹¹⁾ Farina, V.; Krishnamurthy, V.; Scott, W. J. In *Organic Reactions*; Paquette, L., Ed.; John Wiley & Sons: New York, 1997; Vol. 50, pp 1–652. Mitchell, T. N. *Synthesis* **1992**, 803–815. Stille, J. K. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 508–524.

⁽¹²⁾ Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585-9595.


a result of transmetalation from tin to copper.¹³ For these cases, it proved to be highly beneficial to reduce the effective concentration of Cu(I) in solution by the use of a 1:1 THF/ hexanes solvent mixture in which the copper(I) salts are minimally soluble. For example, no ketonic product was observed in the coupling of 2-(tri-*n*-butylstannyl)thiazole with *p*-nitrobenzoic acid *S*-*p*-tolyl ester in THF alone as a solvent, while with 1:1 THF/hexanes, the product was obtained in 69% isolated yield.

For the most part, the reaction of thiol esters with organostannanes follows the same reactivity pattern as the previously described cross-coupling of thiol esters with boronic acids; however, there are some differences that justify the use of an organotin reaction system. For example, no product was detected in several attempted couplings of boronic acids with 2-amino-thiobenzoic acid *S*-*p*-tolyl ester, while the corresponding organotin version of the reaction furnished the desired product in high yield. Furthermore, while various α -heteroatom heteroarylboronic acids are problematic in cross-couplings (i.e, 2-pyridinylboronic acid), the corresponding organostannanes couple efficiently.

Notably, the cross-coupling of *S*-lauroyl-4-mercaptotoluene with 3-propenyl-tri-*n*-butylstannane at 50 °C for 1 h afforded the desired β , γ -unsaturated ketone in 81% yield, although a significantly diminished yield of the ketone resulted from longer reaction times (37% after 18 h). The easy isolation of the β , γ -unsaturated ketone using the present reaction conditions underscores the utility of this new ketone synthesis.¹⁴

(14) **Typical Experimental Procedure for (4-Nitrophenyl)-thiazol-2-yl-methanone.** 2-(Tri-*n*-butylstannyl)thiazole (131 mg, 1.1 equiv, 0.35 mmol), 4-nitrothiobenzoic acid *S*-*p*-tolyl ester (87 mg, 0.32 mmol), CuDPP (120 mg, 1.2 equiv, 0.38 mmol), tri-2-furylphoshine (14 mg, 20 mol %, 64 μ mol), and Pd₂(dba)₃ (7 mg, 2.5 mol %, 8 μ mol) were placed in a Schlenk tube under argon. A 1:1 mixture of dry THF and hexanes (2.5 mL each) sparged with argon was added, and the mixture was heated to 40 °C. After 7 h, the mixture was filtered through a plug of Celite (washed with ether, 15 mL) and then evaporated. The residue was taken up in ethyl acetate (20 mL) and washed with aqueous NH₃ solution (10%) and brine (20 mL each).

The requirement in this reaction for a stoichiometric Cu-(I) carboxylate or diphenylphosphinate suggests that, at a minimum, thiophilic activation of the acylpalladium(II) thiolate is a necessary prerequisite for transmetalation from tin to palladium (Scheme 1). Since CuCl does promote a

low-yield conversion to ketone, it is unclear if concomitant activation of the organostannane by the diphenylphosphinate counterion is responsible for the superior yields in this system.

In conclusion, a mild synthesis of ketones has been described that takes place under neutral reaction conditions. The reaction system consists of thiol esters and tri-*n*-butylorganostannanes that couple in the presence of low loadings of 1:8 $Pd_2(dba)_3/TFP$ as the catalyst system and 1.2–2.2 equiv of Cu(I) diphenylphosphinate.

Acknowledgment. The National Institutes of General Medical Sciences, DHHS, supported this investigation through grant No. GM066153.

Supporting Information Available: Complete description of experimental details and product characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034962X

⁽¹³⁾ Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. **1994**, 59, 5905–5911.

The organic phase was dried over MgSO₄ and concentrated. Purification of the residue by silica gel flash chromatography (hexanes \rightarrow hexanes/CH₂Cl₂ 5:1 \rightarrow hexanes/CH₂Cl₂ 1:1) afforded 52 mg (69%) of the ketone as a pale yellow solid: mp 121 °C; TLC (50% dichloromethane in hexanes, $R_f = 0.42$). Full spectroscopic details are provided in Supporting Information.